Abstract
Phongpaichit, S., Kummee, S., Nilrat, L. and Itarat, A.
Antimicrobial activity of oil from the root of Cinnamomum porrectum
SongkLANAKARIN J. SCI. TECHNOL., March 2007, 29(Suppl. 1) : 11-16

The steam-distilled oil from the root of Cinnamomum porrectum was tested for its antimicrobial activity against human pathogens including bacteria, yeasts and dermatophytes. It exhibited strongest activity against Streptococcus mutans (MIC 0.01 mg/ml) followed by Candida albicans and dermatophytes (0.5-1.0 mg/ml), Bacillus subtilis (2 mg/ml), and susceptible strains of Staphylococcus aureus (4-16 mg/ml). It showed moderate activity against Cryptococcus neoformans (MIC 16-64 mg/ml) but no activity against Pseudomonas aeruginosa and methicillin-resistant S. aureus. These data indicate that C. porrectum oil has antibacterial and antifungal activity.

Key words : Cinnamomum porrectum, oil, antibacterial, antifungal

1Dr. sc.hum (Microbiology), Assoc. Prof., Natural Products Research Unit, 2Cert. Med. Sci., Medical Science Technician, Department of Microbiology, Faculty of Science, 3M.Sc.(Microbiology), Scientist, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkla 90112, Thailand. 4Ph.D.(Pharmacognosy), Assoc. Prof., Applied Thai Traditional Medicine Center, Faculty of Medicine, Thammasat University, Klong Luang, Pathum Thani, 12120 Thailand.

Corresponding e-mail: souwalak.p@psu.ac.th
Antimicrobial activity of *Cinnamomum porrectum* oil

Materials and methods

Preparation of oil

Dried root of *C. porrectum* (7 kg) was chopped into small pieces and soaked in water (30 l) for 3 days, then steam-distilled for 9 h to obtain the oil (128 ml). The yield of the oil was 1.83% v/w. The major component of the oil (95.5-98.0%) as confirmed by GCMS is safrole (Tunsuwan et al., 2006).
Antimicrobial screening

The disk diffusion method (Lorian, 1996) was used to screen the antimicrobial activity of *C. porrectum* oil. Sterile 6-mm diameter paper disks (Schleicher and Schuell, Germany) were impregnated with 2.5, 5 and 10 µl of concentrated oil and 10 µl of oil was diluted in DMSO (100 mg/ml) and placed on the inoculated MHA and SDA agars. Commercially available antibiotic disks of vancomycin (30 µg) and tetracycline (30 µg) were used as standard antibacterials and amphotericin B (20 µg) and ketoconazole (10 µg) as antifungal agents. Disks impregnated with 10 µl of DMSO were used as negative controls. Plates were incubated at 35°C for 18 h for bacteria and 48 h for yeasts. Plates with dermatophytes were incubated at 30°C for 4 days and the inhibition zone diameter was measured. The tests were performed in duplicate and the results were averaged.

Determination of minimum inhibitory concentrations (MICs)

MICs were performed by the macrodilution and microdilution methods according to NCCLS (2004) against bacteria and yeasts, and a modification of NCCLS 38-A (NCCLS, 2002) against dermatophytes. Serial 2-fold dilutions of the oil were mixed with MHB or SDB in the ratio of 1:100 to give the final concentrations of 0.25-128 mg/ml. An equal volume of inoculum suspension (1x10^6 cfu/ml) was then added to each tube or well. Tubes and microplates were incubated at 35°C for 18 h for bacteria and 48 h for yeasts. Dermatophytes were incubated at 30°C for 7-15 days. MICs were recorded by reading the lowest concentration that inhibited visible growth.

Results

The antimicrobial activities of the oil from *C. porrectum* and control drugs are shown in Table 1. Diluted and undiluted oil solutions showed inhibitory activity against all microorganisms tested except *P. aeruginosa*. Their inhibition zones ranged from 7.2 -90 mm (Figure 1) and MIC values 0.01->128 mg/ml. *C. neoformans* and the dermatophytes were the most susceptible strains to the oil when tested by the disk diffusion method. Ten

Figure 1. Disk diffusion assays of the *C. porrectum* oil against Bacillus subtilis and Trichophyton mentagrophytes
Antimicrobial activity of *Cinnamomum porrectum* oil

Phongpaichit, S., *et al.*

Microliters of undiluted oil completely inhibited their growth (90 mm zone). Significant antifungal effects, expressed as MICs of the oil against the three genera of dermatophytes, were seen at the low concentration of 0.5-1.0 mg/ml, while the MICs against *C. neoformans* strains were in the range of 16-64 mg/ml. Although the inhibition zones against *C. albicans* (18.3-70.9 mm) were smaller than those observed with *C. neoformans* when tested with ten µl of undiluted oil, its MICs were much lower (0.5-1.0 mg/ml compared with >16 mg/ml). Among the bacteria tested, *S. mutans* was the most susceptible strain with the lowest MIC of 0.01 mg/ml, followed by *E. coli* (MIC 2.0 mg/ml), *S. aureus* ATCC25923 and *B. subtilis* (MIC 4.0 mg/ml), and *S. aureus* ATCC6538 (MIC 16 mg/ml). The oil exhibited the lowest inhibitory activity against MRSA.

Discussion

The results obtained from this study showed that oil of *C. porrectum* has strong antibacterial and antifungal activities. The major component (85.5-97%) of *C. porrectum* root distilled oil is safrole and this is also the main component in sassafras root bark. This is used as a popular ingredient in soaps, perfumes, foods and drinks. It was also once used as an ingredient for "root beer" in the United States. It has been used as a topical antiseptic and pediculicide, but it may also be carcinogenic (Rocha and Ming, 1999). Inform-
Antimicrobial activity of *Cinnamomum porrectum* oil

Phongpaichit, S., et al.

15

 oils, cinnamaldehyde and carvacrol against *Malassezia furfur* and *Candida albicans*. J. Essential Oil Res. 11: 119-129.

Acknowledgements

This work was financially supported by Technology Transfer Grant, Prince of Songkla University. The authors would like to thank Dr. Brian Hodgson for useful advice.

References

We found that *C. porrectum* oil had strong antibacterial activity against *S. mutans*. *S. mutans* is considered to be one of the most important cariogenic species of human microbial flora (Loesch, 1986). The suppression of *S. mutans* by *C. porrectum* oil, is of clinical importance. Moreover, *C. porrectum* oil has antifungal activity against dermatophytes, *C. albicans*, and *C. neoformans*. Dermatophytes generally cause infections of the skin, scalp and nail. *C. albicans* and *C. neoformans* are causative agents of candidiasis and cryptococcosis, the top five opportunistic infections in AIDS patients in Thailand (MOPH, 2005). *C. porrectum* oil is a strong candidate for treatment of such fungal infections. However, Chen *et al.* (1999) reported that safrole from betel quid forms stable DNA-adducts in human oral tissue following betel quid chewing, which may contribute to oral carcinogenesis. Therefore, applying oil containing safrole to human tissues should be avoided.

lation obtained through interviewing traditional healers revealed that *C. porrectum* oil was used by local people to relieve muscle ache and toothache. We found that *C. porrectum* oil had strong antibacterial activity against *S. mutans*. *S. mutans* is considered to be one of the most important cariogenic species of human microbial flora (Loesch, 1986). The suppression of *S. mutans* by *C. porrectum* oil, is of clinical importance. Moreover, *C. porrectum* oil has antifungal activity against dermatophytes, *C. albicans*, and *C. neoformans*. Dermatophytes generally cause infections of the skin, scalp and nail. *C. albicans* and *C. neoformans* are causative agents of candidiasis and cryptococcosis, the top five opportunistic infections in AIDS patients in Thailand (MOPH, 2005). *C. porrectum* oil is a strong candidate for treatment of such fungal infections. However, Chen *et al.* (1999) reported that safrole from betel quid forms stable DNA-adducts in human oral tissue following betel quid chewing, which may contribute to oral carcinogenesis. Therefore, applying oil containing safrole to human tissues should be avoided.

Acknowledgements

This work was financially supported by Technology Transfer Grant, Prince of Songkla University. The authors would like to thank Dr. Brian Hodgson for useful advice.

References

We found that *C. porrectum* oil had strong antibacterial activity against *S. mutans*. *S. mutans* is considered to be one of the most important cariogenic species of human microbial flora (Loesch, 1986). The suppression of *S. mutans* by *C. porrectum* oil, is of clinical importance. Moreover, *C. porrectum* oil has antifungal activity against dermatophytes, *C. albicans*, and *C. neoformans*. Dermatophytes generally cause infections of the skin, scalp and nail. *C. albicans* and *C. neoformans* are causative agents of candidiasis and cryptococcosis, the top five opportunistic infections in AIDS patients in Thailand (MOPH, 2005). *C. porrectum* oil is a strong candidate for treatment of such fungal infections. However, Chen *et al.* (1999) reported that safrole from betel quid forms stable DNA-adducts in human oral tissue following betel quid chewing, which may contribute to oral carcinogenesis. Therefore, applying oil containing safrole to human tissues should be avoided.

Acknowledgements

This work was financially supported by Technology Transfer Grant, Prince of Songkla University. The authors would like to thank Dr. Brian Hodgson for useful advice.

References

Antimicrobial activity of *Cinnamomum porrectum* oil

Phongpaichit, S., et al.

